
Eur. Phys. J. B 53, 91–98 (2006)
DOI: 10.1140/epjb/e2006-00346-y THE EUROPEAN

PHYSICAL JOURNAL B

Phonon-induced decoherence and dissipation in donor-based
charge qubits

J. Eckela, S. Weiss, and M. Thorwart

Institut für Theoretische Physik IV, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany

Received 24 May 2006 / Received in final form 20 July 2006
Published online 7 September 2006 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2006

Abstract. We investigate the phonon-induced decoherence and dissipation in a donor-based charge quan-
tum bit realized by the orbital states of an electron shared by two dopant ions which are implanted in
a silicon host crystal. The dopant ions are taken from the group-V elements Bi, As, P, Sb. The excess
electron is coupled to deformation potential acoustic phonons which dominate in the Si host. The par-
ticular geometry tailors a non-monotonous frequency distribution of the phonon modes. We determine
the exact qubit dynamics under the influence of the phonons by employing the numerically exact quasi-
adiabatic propagator path integral scheme thereby taking into account all bath-induced correlations. In
particular, we have improved the scheme by completely eliminating the Trotter discretization error by a
Hirsch-Fye extrapolation. By comparing the exact results to those of a Born-Markov approximation we find
that the latter yields appropriate estimates for the decoherence and relaxation rates. However, noticeable
quantitative corrections due to non-Markovian contributions appear.

PACS. 03.67.Lx Quantum computation – 63.20.Kr Phonon-electron and phonon-phonon interactions –
03.65.Yz Decoherence; open systems; quantum statistical methods

1 Introduction

During the last decade it turned out that solid-state based
nano structures are promising candidates for the realiza-
tion of quantum information processing devices [1]. The
building blocks are quantum mechanical two-state systems
(qubits) and some of the proposed designs have been real-
ized in groundbreaking experiments, see reference [1] for
a recent review on this field. Thereby, various approaches
have been undertaken, ranging from superconducting flux
and charge qubit devices to devices using the spin or the
charge degrees of freedom of individual electrons in con-
fined geometries. Aiming at an extreme miniaturization
of solid-state devices down to the nm-scale, it has been
proposed to implant individual dopant atoms in a semi-
conductor crystal and to use nuclear spin states of buried
phosphorus dopants to realize a spin-qubit (Kane’s pro-
posal [2]). Complementary to the Kane architecture, the
charge degree of freedom of a single electron shared by two
donor atoms in a host crystal can be used for the coding
of the logical information, as proposed in references [3,4].
Thereby, the logical states |0〉 and |1〉 are realized by the
charge states of the double-donor-system with the excess
electron either located on the left or on the right donor.
The transition between these states occurs via tunneling of
the electron between the two dopants. The charge qubits
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can in principle be controlled efficiently by external elec-
tric fields, e.g., by an applied gate voltage. This property
renders the proposed architecture attractive for realizing
control schemes with available fabrication and read-out
technologies [4]. Experimental progress for this kind of
ion-implanted Si:P nanostructures has been reported re-
cently [5].

On the other hand, solid-state qubits suffer from the
large number of degrees of freedom due to their embed-
ding in a complex many-particle environment. The envi-
ronmental decoherence and dissipation lead to a deteri-
oration of the performance of quantum logic operations
and also strongly influence entanglement between qubits
[6] necessary for quantum gate operations. Various sources
of decoherence include nuclear spins, phonons, and elec-
tromagnetic fluctuations in the host crystal. To gain a
detailed understanding of the various decoherence mech-
anisms, realistic model calculations have to be performed
which then allow to sort out the different contributions.
In this work we concentrate on the influence of a phonon
bath on the shared electron. To be definite, we consider
a charge qubit formed by two group-V donors as pro-
posed in reference [7]. One donor is formed by a phos-
phorus atom while the second donor will be one of the
class {Bi, As, P, Sb}. The donor pair is assumed to be
implanted in a silicon crystal host and share a common
electron. We consider linear acoustic phonons coupled to
the electron and determine the dynamics of the charge
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oscillations between the two donors. Due to the particular
geometry, a tailored phonon environment is formed for the
electron which depends non-monotonously on the phonon
frequencies. In order to provide accurate quantitative re-
sults on the decoherence and dissipation rates, we apply
the numerically exact iterative quasi-adiabatic propaga-
tor path integral (QUAPI) scheme [8,9]. In particular, we
have improved the widely used method by providing a
recipe to completely eliminate the Trotter discretization
error. This allows to obtain fully convergent exact results
by extrapolation to a vanishing Trotter increment [10].
An appealing alternative to extensive numerical studies
are approximative calculations which, for instance, rely on
the weak coupling between the qubit and the environment.
The most familiar Born-Markov or weak-coupling approx-
imation (WCA) [11] yields to simple closed expression for
the decoherence and relaxation rates. However, they ap-
ply for typical situations when the bath has a smooth
frequency distribution [11]. In our case, the environment
is particularly shaped by the geometry leading to a non-
monotonous bath spectral density. Hence, it is not a priori
clear whether the widely used WCA is appropriate and a
careful check is desirable. By comparing the exact numeri-
cal QUAPI results with the approximate WCA results be-
low, we will show that for realistic parameters, the WCA
typically yields the correct order of magnitude for the de-
coherence and relaxation rates. However, differences are
noticeable when a quantitative comparison is made. We
furthermore note that the calculated phonon decoherence
and relaxation rates comprise a fundamental upper limit
for the coherence properties of this architecture which can
hardly be overcome.

The presented set-up is related to a double-quantum
dot charge qubit realized in a GaAs semiconductor [12],
where the geometrical constraints induce charge qubit os-
cillations with noticeable non-Markovian corrections due
to the particularly shaped phonon environment. While
piezoelectric phonons dominate in GaAs, we have to con-
sider here the dominating deformation potential electron-
phonon coupling since the Si crystal displays inversion
symmetry.

2 The model

To study the influence of the phonons on decoherence and
dissipation, we assume that the charge qubit is isolated
from any leads. It is formed by a pair of donor atoms em-
bedded in a silicon substrate, which share a single excess
electron [3,4]. To be specific, we consider the situation
of one donor being a phosphorous atom while the second
one is an individual donor atom X chosen from the group
X ∈ {Bi, As, P, Sb} [7]. Then, the two logic states |0〉, |1〉
of the charge qubit are defined by the electron residing ei-
ther at donor 1 or 2, respectively. The total Hamiltonian
is given in terms of the standard spin-boson model [11,13]

H = HS + HB + HSB , (1)
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Fig. 1. Sketch of the geometry of a donor-based charge qubit
formed two donor atoms at a distance d and the various angles
of the phonon propagation.

where HS is the two-state Hamiltonian for the charge
qubit, HB models the phonon bath and HSB includes the
electron-phonon coupling.

2.1 Model for the charge qubit

We represent the Hamiltonian of the charge qubit in the
basis of the two localized electronic states denoted as
|L〉 ≡ |0〉 and |R〉 ≡ |1〉, each being the 1s orbital of
the left/right donor atom, the latter being placed at the
origin and at the position dey, see Figure 1 for a sketch of
the geometry. The localized orbital belonging to the right
(left) donor is fully described by the position vector of the
electron, i.e., rL = r and rR = r + dey, respectively. In
addition, we allow for an external constant energy bias
ε which for instance could be due to a nearby capacitive
gate. In terms of the Pauli spin matrices σi, the two-state
Hamiltonian then reads

HS = �∆σx + �εσz. (2)

The two lowest lying energy eigenstates |E±〉 are given as
an (anti-)symmetric superposition of the localized states
|L〉 and |R〉 such that |E±〉 = (|L〉±|R〉)/

√
2 with energies

E± = ∓∆/2. The tunneling amplitude then follows as
∆ = E+ − E− and is a function of the donor distance d.

In order to determine the tunneling amplitude ∆, we
have to calculate approximate eigenvalues of the low-
est symmetric and antisymmetric energy-eigenstate. In
principle, rather highly elaborated methods are available
for their calculation, including the anisotropic conduction
band dispersion of silicon, the valley orbit interaction and
valley interference effects [7,14]. The latter leads to an
oscillatory behavior of the tunneling amplitude ∆ for in-
creasing the donor distance d. Noticeably, the oscillations
are weak if the two donors are placed in the [100]-plane of
the Si host [7]. However, we aim for a detailed and quanti-
tative understanding of the electron-phonon decoherence
mechanism and thus resort to the simplest straightforward
procedure to determine the tunneling amplitude which
is the well established linear combination of atomic or-
bitals (LCAO) [3,15]. This tight-binding method is very
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successful for determining the molecular orbitals for the
H+

2 -molecule but can easily be generalized to our model
by introducing an effective Bohr radius [16]. When we ne-
glect the conduction-band anisotropy, we can assume that
the localized states |ξ〉 (ξ = L, R) are represented by the
1s orbital of each donor. They read

|ξ〉 =

√
1

πa3
ξ

e−rξ/aξ (3)

where aξ is the effective Bohr-radius of the donor ξ [16]
and rξ = |rξ|. In the following, the left donor is assumed
to be the phosphorous atom, whereas the right donor is
taken from the group-V donors {Bi, As, P, Sb}. Hence, we
introduce the ratio p such that aR = paL.

To calculate the energy levels an ansatz for the wave
function for the (anti-)symmetric (∓) part is made and
the overlap between the two wave functions is calculated,
yielding the energies for the (anti-)symmetric state. If en-
ergies are scaled in atomic units, they read [15]

E± = E
(±)
1 (d) + E

(±)
2 (d) . (4)

Here, E
(±)
1 (d) is the kinetic energy and E

(±)
2 (d) is the po-

tential energy, both being functions of the (dimensionless)
donor distance d. They read

E
(±)
1 (d) =

1 ± e−d(1 + d − d2/3)
1 ± e−d(1 + d + d2/3)

E
(±)
2 (d) = −2

1 ± 2 e−d(1 + d) + (1/d) − (1/d + 1) e−2d

1 ± e−d(1 + d + d2/3)
.

(5)

Due to the fixed positions of the donors, there is no need
to minimize the energy with respect to the donor distance,
in contrast to analogous calculations for the H+

2 -molecule.
According to the LCAO calculations typical tunneling am-
plitudes for a distance of d = 7.06 nm (which corresponds
to a separation of the two dopants by n = 13 lattice sites)
follow as ∆ ≈ 16 meV. This is qualitatively consistent with
the results obtained from a more refined approach tak-
ing into account interference effects in the Si band struc-
ture [7].

2.2 Coupling to linear acoustic phonons

The phonon bath is due to the silicon host crystal and is
modeled as usual in terms of the bosonic operators bq as

HB = �

∑
q

ωqb†qbq , (6)

with the phonon dispersion relation ωq. The electron-
phonon interaction reads [17,18]

HSB = �

∑
q

(αL
qNL + αR

q NR)(b†q + b−q) . (7)

Here, Nξ = 0, 1 is the number of the excess electrons on
the donor ξ, respectively, and αξ

q = λqe−iq·rξFξ(q). The
coupling constant λq depending on the wave vector q is
specified below. Note that the phonons can propagate in
all three dimensions, and the electron-phonon coupling is
not isotropic in general [19]. To take care of the charge dis-
tribution in each donor we define a form factor according
to

Fξ(q) =
∫

d3r nξ(r)e−iq·r , (8)

where nξ(r) is the charge density of the donor ξ. The cou-
pling Hamiltonian is rewritten in the form [18]

HSB =
�

2
σz

∑
q

gq(b†q + b−q) , (9)

with gq = [λq(FL(q) − FR(q))]. The charge density distri-
bution then follows directly from equation (3) as nξ(r) =
|〈r|ξ〉|2, which leads to the form factors FL(q) = fL(q)
and FR(q) = fR(q)e−iq·dey with fξ(q) = 16/[4+(qaξ)2]2.

In this work we focus on linear acoustic phonons with
linear dispersion relation ωq = s|q|, s being the sound
velocity for silicon (s ≈ 9×103 m/s) [20]. Since the silicon
crystal has an inversion center there is no piezoelectric
coupling between electrons and phonons, wherefore the
dominating coupling is due to the deformation potential.
Thus, the coupling constant reads

λq =
D

�
q

√
�

2ρmV ωq
, (10)

where D is the deformation constant for silicon (D ≈
8.6 eV, see Ref. [21]), ρm is the mass density of silicon
(ρm ≈ 2.33 × 103 kg m−3, see Ref. [20]) and V is the vol-
ume of the unit cell.

All the properties of the phonon bath can be captured
in the spectral density defined as

G(ω) =
∑
q

|gq|2δ(ω − ωq) . (11)

Using equation (10) and the definition of the form factors
and taking into account the geometry, the sum over q can
be transformed into a continuous integral which can read-
ily be carried out. One then obtains the spectral density

G(ω) =
64D2

π2ρm�s5
ω3

[(
4 +

(ω

s
aL

)2
)−4

+
(

4 +
(ω

s
paL

)2
)−4

− 2
(

4 +
(ω

s
aL

)2
)−2

×
(

4 +
(ω

s
paL

)2
)−2

j0

(ω

s
d
)]

. (12)

where j0 is the spherical Bessel function. The spectral den-
sity is sketched in the inset of Figure 2. The low-frequency
behavior is superohmic according to G(ω → 0) ∝ ω3,
while in the high-frequency limit, it decays algebraically as
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Fig. 2. The bath autocorrelation function (response function)
L(t) = LR(t) + iLI(t) for the spectral density G(ω) (inset) of
the phonon bath for the case of two P donors in a Si host (p =
1, deformation potential phonons), with s = 9 × 103 m/s, an
effective Bohr radius of aP = 1.22 nm, and inter-donor distance
d = 10.32 nm. The temperature is T = 50 mK.

G(ω → ∞) ∝ ω−5. The crossover between these two limits
occurs on a frequency scale ωc = s/aP ≡ τ−1

c , where aP

is the radius of the phosphorus donor (aP = 1.22 nm, see
Ref. [16]), yielding ωc = 2.46 THz, which corresponds to
an energy of 10.17 meV. As we will see below, typical tun-
neling amplitudes ∆ are comparable to this energy scale.
Thus, the frequency distribution of the bath is no longer
monotonous in the range of the relevant system energies.
As common approximative analytical treatments [3,11] of
phonon-induced decoherence typically involve a smooth
frequency distribution, it is not a priori clear whether
their results are applicable to this situation. Moreover,
the used Born-Markovian approximation which neglects
bath-induced correlations might not describe properly the
dynamics. This can be seen from the autocorrelation func-
tion [11] of the bath, i.e.,

L(t) = LR(t) + iLI(t)

=
1
π

∞∫
0

dωG(ω)
[
coth

�ωβ

2
cosωt − i sinωt

]
,(13)

which is shown in Figure 2. The typical width of the corre-
lation function is comparable to the time scale ∆−1 ≈ ω−1

c

of the system dynamics. The Born-Markov approxima-
tion corresponds to replacing the strongly peaked real part
LR(t) by a δ-function with the corresponding weight while
the imaginary part LI(t) is often neglected. However, since
the geometry tailors a specific structured phonon environ-
ment for the charge qubit, it is not clear from the very be-
ginning that the Markovian assumption is valid. It is the
main purpose of this work to investigate this issue and
compare exact real-time path integral simulations with
approximate weak-coupling (Born-Markov) results.

3 The improved QUAPI scheme

The dynamics of the charge qubit is described in terms
of the time evolution of the reduced density matrix ρ(t)
which is obtained after tracing out the bath degrees of
freedom, hence

ρ(t) = trBK(t, 0)W (0)K−1(t, 0) ,

K(t, 0) = T exp

⎧⎨
⎩− i

�

t∫
0

dt′H

⎫⎬
⎭ . (14)

K(t, 0) denotes the propagator of the full system plus
bath, T is the time ordering operator and H is the
Hamiltonian, equation (1). The full density operator W (0)
at initial time t = 0 is as usual assumed factorizing ac-
cording to W (0) ∝ ρ(0) exp[−HB/(kBT )], where kB is the
Boltzmann constant and T is the bath temperature [11].
In this work the qubit dynamics always evolves from the
initial state ρ(0) = |L〉 〈L|.

In order to investigate the dynamics of the system, we
use the quasi-adiabatic propagator path integral (QUAPI)
scheme [8] being a numerically exact iteration scheme
which has been successfully adopted to many problems of
open quantum systems [9,12]. For details of the iterative
scheme we refer to previous works [8,9] and do not reit-
erate the scheme here again. However, we have improved
the method at one important step and we will describe
this in greater detail next.

The algorithm is based on a symmetric Trotter split-
ting of the short-time propagator K(tk+1, tk) of the full
system into a part depending on HS and HB + HSB de-
scribing the time evolution on a time slice ∆t. This is exact
in the limit ∆t → 0 but introduces a finite Trotter error to
the propagation which has to be eliminated by choosing
∆t small enough that convergence has been achieved. On
the other side, the bath-induced correlations being non-
local in time are included in the numerical scheme over
a finite memory time τmem = K∆t which roughly corre-
sponds to the time range over which the bath autocorre-
lation function L(t) given in equation (13) is significantly
different from zero. Note that for any finite temperature
L(t) decays exponentially at long times [11] justifying this
approach. To obtain convergence with respect to the mem-
ory time, K has to be increased until converged results
have been found. However, the numerical effort grows ex-
ponentially with the memory length K and for the present
two-level system, the memory length is restricted to typ-
ical values of K = 12 on a standard processor with 2 GB
RAM for practical reasons.

Thus, the two strategies to achieve convergence are
countercurrent. To solve this, the principal of least de-
pendence has been invoked [9] to find an optimal time
increment in between the two limits. However, here we
show that the algorithm can be improved by applying a
different strategy.

We first choose some small enough time increment ∆t.
Then, one has to increase the memory time τmem by in-
creasing K until convergence has been achieved. Typical
results of this memory convergence check are shown in
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Fig. 3. (Color online) Check of convergence with respect to the
memory time τmem = K∆t for the decoherence rate γ (sym-
metric qubit ε = 0) and for the donor distances d = 4.34 nm,
d = 7.06 nm and d = 10.32 nm and the corresponding tunnel
matrix elements obtained from the LCAO. The Trotter time
increment is fixed to ∆t = 0.55ωc.

Figure 3. Shown is the decoherence rate γ for increasing
memory time for different donor distances (p = 1) for the
symmetric qubit ε = 0. Note that the decay rate has been
obtained by fitting the results for the population difference
P (t) = 〈σz〉t to an exponentially decaying cosine. The re-
maining error is the Trotter error. However, following ref-
erence [10], for any Hermitian observable, this symmetric
Trotter error vanishes quadratically in the limit ∆t → 0.
This opens the possibility to extrapolate the results to
∆t → 0, thereby completely eliminating the Trotter error.
This is done by decreasing ∆t from the initial value and
then by finding the extrapolated exact result (of course,
convergence has to be verified again for the smaller values
of ∆t). Typical results of this extrapolation procedure are
shown in Figure 4, indicating that the numerical values fol-
low a line for decreasing step sizes. Note that we consider
P (tfix) at an arbitrary time tfix = 34.1ωc in this exam-
ple. Indeed, we find the predicted behavior for the Trotter
error to vanish and perform a linear regression to ∆t → 0,
also shown in Figure 4. The y-axis intersection gives the
numerical exact value for the observable of interest, in this
case afflicted with a tiny error bar coming from the lin-
ear regression. In general, the convergence properties of
an observable strongly depend on the involved parame-
ters, similar to path-integral quantum Monte-Carlo simu-
lations [22]. Different observables show different behaviors
with decreasing Trotter step size ∆t, as for instance the
particle density in contrast to the energy of the system in
reference [22].

4 The dynamics of the charge qubit

Equipped with the numerically exact improved QUAPI
scheme, we can now study the dynamics of the charge
qubit in detail. To extract the decoherence rate γ, the re-
laxation rate γr, the equilibrium population difference P∞
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Fig. 4. (Color online) Example of the Trotter convergence
for the the population difference of the qubit, P (tfix), from
which the quantities of interest are extracted. In the lower
sketch the tunnel amplitude was chosen as ∆/ωc = 2.24 and
tfix = 34.1ωc, and in the upper sketch ∆/ωc = 3.24 and
tfix = 18.2ωc. The memory-time is fixed to τmem = 3.85/ωc

and three values of K = 10, 11, 12 have been chosen. At
τ 2

mem/K2 → 0 the value P (tfix) is shown as a result of the
extrapolation ∆t → 0, with the error of the linear regression
(horizontal bars).

and the oscillation frequency Ω, we fit a combination of ex-
ponentially decaying cosine and sine functions [11] to the
numerically exact data, from which the Trotter error has
been eliminated. We can then investigate the dependence
of the above quantities on the experimentally relevant pa-
rameters. We emphasize again that realistic assumptions
on the geometry of the system enter the spectral density
equation (13) and thus allow to calculate quantitative re-
alistic results.

One of the major goals of this work is to verify the
Born-Markov (weak-coupling) approximation, since the
later results in very simple and compact formulas for pa-
rameters governing the dynamics. Hence, we compare the
exact QUAPI results with results obtained within a WCA
which are known as [11]

γ =
γr

2
+

2πε2

∆2
b

S(0) , (15)

γr =
π∆2

eff

2∆2
b

S(∆b) , (16)

Ω2 = 4∆2
eff [1 − 2 Reu(2i∆b)] + 4ε2 , (17)

P∞ = − ε

∆b
tanh

(
�∆bβ

2

)
. (18)

The spectral function S(ω), related to the phonon spectral
density, equation (13), via S(ω) = G(ω) coth(�ω/(2kBT )),
represents emission and absorption of a single phonon and
∆b = 2

√
∆2

eff + ε2 is twice the effective qubit frequency.
∆eff is the effective tunnel matrix element at T = 0 [11],
which includes the renormalization by a Franck-Condon
factor stemming from the high-frequency modes of the
reservoir [11]. For our case, one easily finds that ∆eff ≈ ∆
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Fig. 5. (Color online) Quality factor as a function of the tun-
neling amplitude ∆ for different donor combinations and a
small donor distance d = 4.34 nm. The symbols depict the
exact QUAPI results while the dashed lines mark the results
of the WCA. Temperature is fixed at T = 50 mK.

with a deviation of less than 1%. The function u(z) is
defined in terms of the frequency integral

u(z) =
1
2

∞∫
0

dω
G(ω)

ω2 + z2

(
coth

(
�ω

2kBT

)
− 1

)
. (19)

4.1 Coherent charge oscillations for the symmetric
qubit ε = 0

For the symmetric qubit with zero bias (i.e., only deco-
herence, no dissipation), we have calculated the time evo-
lution of P (t) and have observed coherent charge oscil-
lations. In order to quantify them, we define the quality
factor Q = Ω/(πγ) where the frequency Ω and the de-
coherence rate γ have been been obtained from the fit
as described above. We have performed extensive simu-
lations for three different donor distances d for various
combinations of donor atom species and show the results
as a function of the tunneling amplitude ∆ in Figures 5–7,
each for a fixed donor distance d. A variation of ∆ for a
fixed donor distance can, for instance, be achieved by a
small additional gate voltage which slightly distorts the
1s orbitals leading to an increased overlap of the wave
functions.

For the smallest donor distance d = 4.34 nm, we ob-
serve in Figure 5 that Q increases monotonously for in-
creasing ∆. Thereby, the results for Q vary over two orders
of magnitude for the different donor species at large ∆.
Moreover, the combination of two P donors or of one P
and one (very similar) Sb donor displays the best deco-
herence properties. The dashed lines in Figure 5 display
the results of the WCA given in equations (15) and (17).
A reasonable agreement is found in this case.

For intermediate donor distance d = 7.06 nm, see Fig-
ure 6, Q first decreases but then increases again with in-
creasing ∆. This can be understood by the fact that d
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Fig. 6. (Color online) Same as Figure 5, but for an interme-
diate donor distance d = 7.06 nm.
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Fig. 7. (Color online) Same as Figure 5, but for a large donor
distance d = 10.32 nm.

determines the shape of the spectral density and, in par-
ticular, the location of the frequency of the cross-over,
relative to the qubit frequency ∆. For the overall perfor-
mance, the similar observation as for the smaller distance
(see above) apply. Also in this case, the WCA seems to
be appropriate although small deviations for all ∆ can be
observed which can be attributed to small non-Markovian
corrections stemming from the specifically tailored phonon
environment.

In the case of large donor distance d = 10.32 nm, see
Figure 7 the differences between the various donor species
almost vanish and are only noticeable at small ∆. Also
the WCA agrees well at large ∆ and also yields the cor-
rect order of magnitude for small ∆ although differences
become noticeable in this regime. Note that in this case,
Q decreases for increasing ∆, in contrast to the case of
small and intermediate distances.

Noticeably, we find that the Q-factor is independent
of temperature for all relevant parameter combinations
(not shown here). This is due to the fact that realistic
temperatures correspond to frequencies of T = 6.5 × 109

Hz and hence all system frequencies are much larger. This
behavior is in contrast to what we have recently reported
in GaAs DQD systems [12].
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Fig. 8. (Color online) Upper panel: relaxation (γr) and deco-
herence (γ) rate for increasing bias ε. Symbols are the exact
QUAPI results while the dashed lines are the corresponding
WCA results. Lower panel: oscillation frequency Ω and asymp-
totic value P∞. The remaining parameters are d = 7.06 nm,
∆ = 0.57ωc, and T = 50 mK.

Note that the oscillatory behavior of ∆ for increasing
d [7] is not included in this simple LCAO approximation.
However, when considering the Q-factor in Figures 5–7,
the oscillatory behavior of ∆ for growing donor distances d
does not affect Q substantially. This can be rationalized by
considering the weak-coupling results equations (15–17)
for ε = 0. Then, it becomes clear that the only part where
∆(d) appears is in the high-frequency part of G(ω) (as-
suming low temperature such the the coth approaches one
and being interested in ∆ ≈ ωc). The prefactors, which in
principle contain ∆(d), drop out when the ratio is calcu-
lated.

4.2 Dynamics of the biased charge qubit ε �= 0

When a finite bias ε �= 0 is present, in addition to deco-
herence also relaxation occurs to a non-zero asymptotic
value P∞ �= 0. The corresponding decoherence and relax-
ation rates are also influenced by the presence of a bias in
the sense that the effective qubit frequency ∆b grows with
increasing ε. Then, the behavior of the environmental fre-
quency distribution is essential: if it grows with increasing
frequency, decoherence and dissipation will become more
effective and if it decreases the environmental effects will
diminish. This is what we observe from the results shown
in Figure 8. For comparison, we also show the correspond-
ing WCA results, which yield the qualitatively correct be-
havior while differences in the quantitative results occur.

5 Conclusion

To summarize, we have investigated the phonon-induced
decoherence and dissipation in donor-based charge qubits
formed by a pair of donor atoms placed in a Si crystal host.
The donor pair is formed by one P donor and one donor
of the group Bi, As, P, Sb. We have employed the numeri-
cally exact quasi-adiabatic path-integral propagator in its

iterative version. The major achievements of our work is
twofold: (i) we have first improved the QUAPI scheme
in the sense that the Trotter discretization error can now
be completely eliminated by extrapolating the results to
vanishing Trotter increment, as it is known that the er-
ror vanishes quadratically; (ii) beyond these methodical
aspects, we have obtained numerically exact results for
the real-time dynamics of charge qubits under the influ-
ence of acoustic deformation potential phonons. Realistic
assumptions on the tunneling amplitude enter via LCAO
calculations of the wave functions and the qubit energies
in our model. Moreover, we have included the particular
phonon environment tailored by the particular geometry
of the set-up via geometrical form factors and materials
characteristics. No fitting parameters of any sort were uti-
lized.

In the absence of a static bias we have investigated
the Q-factor of the charge oscillations as a function of the
donor distance and as well as a function of the tunnel-
ing amplitude. We have compared our results with those
obtained from a WCA within an analytical approach in
terms of real-time path-integrals and found that only small
non-Markovian corrections appear. This can be attributed
to the dominating super-Ohmic properties of the phonon
environment at small frequencies. Furthermore we have
investigated the dynamics in the case of a static bias and
have found that the qualitative behavior of the decoher-
ence and damping rates follows the form of the environ-
mental frequency distribution. Non-Markovian corrections
are also found in this case.

At present, no experimental realizations of this setup
is yet reported. Nevertheless, we emphasize that our re-
sults on the decoherence and dissipation induced by the
electron-phonon coupling represent a fundamental upper
limit to the coherence of such donor based charge qubits
which can hardly be negotiated due to its intrinsic nature.
This has to be seen in view of the DiVincenzo criteria [23]
and also for the future realization of quantum information
processes. However, the dominating source of decoherence
in this kind of qubit realization has to be investigated in
realistic devices.

This work was supported by the ESF network INSTANS, the
DFG-SFB Transregio 12, and the DFG Priority Program 1243.
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